Клеточная мембрана
Содержание:
- Введение в нейробиологию
- Цитоплазма и клеточная мембрана
- Что такое клеточная мембрана
- Что такое супердиффузионные мембраны
- История исследования клеточной мембраны
- Основные функции клеточной мембраны
- Функции
- Состав клеточной мембраны: ее строение и уникальность
- Строение
- Функции
- Свойства биологических мембран
- Липиды клеточных мембран
- Функции
- Значение и выводы
Введение в нейробиологию
2. Клеточные мембраны структура и функции
Нейроны специализированы для интеграции выбранных внеклеточных сигналов, как пространственно, так и во времени. В дополнение к генерированию потенциалов действия и посредством синаптической активности, сигнализируя о других клетках, структурные модификации инициируются внутри нейронов, которые могут быть столь же кратковременными, как стробирование ионного канала или как долгое время, как память. Почти вся эта активность связана с клеточными мембранами, и многие из этих мембранных функций обсуждаются в последующих главах. Эта глава начинается с кратких обсуждений физической химии, лежащей в основе липидного и белкового компонентов клеточных мембран (рис. 2-1-2-4), приступает к изучению некоторых аспектов мембранной биохимии, относящихся к нейронам и их поддерживающим клеткам, и заканчивается обсуждением некоторых проблем функций клеточной мембраны, которые являются субъектами текущих исследований. Чтобы выполнить свою уникальную функциональную роль, каждый нейрон должен регулировать множество внутриклеточных действий. которые происходят в аксонах и дендритах, удаленных от ядра клетки. Например, аксоновское руководство во время разработки или ремоделирование дендритных шипов в ответ на местный ввод, каждый из них включает в себя множество различных сложных систем управления, которые сильно локализованы и в значительной степени автономны.
Рис. Обзор структуры плазматической мембраны. Плазменные мембраны отличаются от других клеточных мембран наличием как гликолипидов, так и гликопротеинов на их внешних поверхностях и прикрепления цитоскелетных белков к их цитоплазматическим поверхностям. Изображены взаимосвязи между типичными мембранными компонентами. Белки, которые вводятся через липидный бислой (A1-A3), называемый «интегральными» мембранными белками, часто являются гликозилированными (круги лаванды), как и некоторые двухслойные липиды (D) и многие компоненты внеклеточного матрикса (E). Многие взаимодействия на внеклеточной поверхности стабилизируются водородной связью между этими гликозильными остатками. Некоторые интегральные мембранные белки могут взаимодействовать в силу специфических сайтов рецепторов с внутриклеточными белками (В), с внеклеточными компонентами (С) и формировать специфические соединения с другими клетками (А2). Множество интегральных мембранных белков опосредует различные пути передачи сигналов и активного транспорта.
Цитоплазма и клеточная мембрана
Цитоплазма – это часть клетки, которая находится между плазматической мембраной и ядром. Выделяют составляющие:
- гиалоплазму (основа цитоплазмы),
- органоиды (постоянные составляющие)
- включения (временные составляющие).
Химический состав цитоплазмы
До 90% занимает вода, остальное – всевозможные соединения органики и неорганических веществ. Цитоплазма имеет щелочную реакцию. Отличительная особенность цитоплазмы – циклоз или постоянное движение. Заметить это можно по перемещению внутри клетки хлоропластов. Жизнедеятельность клетки напрямую зависит от движения цитоплазмы. Прекращение движения ведет к гибели клетки, прекращению ее жизнедеятельности.
Гиалоплазма или цитозоль – коллоидный раствор, который не имеет цвета. По составу напоминает густую слизь. В этой жидкости протекают процессы, которые обеспечивают обменные процессы веществ. Благодаря цитозоли осуществляется связь между ядром и всеми органоидами
.
В свою очередь подразделяется на две формы, которые способны менять свое физическое состояние.
- золь – разжиженная,
- гель – тягучая.
Цитоплазма объединяет все внутренние составляющие клетки в единое целое. Ее среда – это место где протекают физиологические и биохимические клеточные процессы. Цитоплазма отвечает за жизнедеятельность и функционирование органоидов.
Что такое клеточная мембрана
Если провести аналогию с куриным яйцом (разбив скорлупу, аккуратно отделить от нее тонкую полупрозрачную пленочку), то визуально можно представить, что скорлупа — это плотная клеточная оболочка, а пленка — мембрана. Эта картинка очень наглядно позволяет увидеть, каким образом под клеточной стенкой, состоящей из целлюлозы, располагается плазмалемма. Конечно, это представление будет условным, но, действительно, мембрана в переводе с латинского языка означает кожа. Хотя этот термин достаточно давний, он точно передает сущность мембранной структуры .
Цитолемма (еще одно ее название) животной клетки плотной оболочкой не защищена, однако имеет особый слой, состоящий из белков и жиров, соединенных с сахарами (гликопротеинов и гликолипидов). Называют его гликокаликс, и роль, которую он несет (рецепторная, сигнальная), очень важна для жизнедеятельности.
Строение
Строение структуры уникально, и именно за счет него функции клеточной мембраны выполняются точно и избирательно.
В структуру плазмалеммы входят молекулы:
- фосфолипидов,
- гликолипидов,
- холестерола,
- белков.
Однако не только такой щедрый химический состав делает цитоплазматическую мембрану особой структурой, все свои функции она выполняет благодаря строгой организации молекул.
Строение плазмалеммы физиологически идеально — двойной слой молекул жиров (липидов), полярно организованных, не дают своим выходить за пределы клетки, а чужим — проникать внутрь.
Организация плазмалеммы:
- мембрана состоит из липидов молекулы, которые имеют особое строение,
- каждый липид имеет два конца гидрофильная (любящая воду) головка и гидрофобный (боящийся воды) хвост,
- липиды выстроены таким образом, чтобы головки были снаружи, а гидрофобные хвосты внутри,
- поверхность мембраны гидрофильна (пропускает воду и, соответственно, растворы), а вот внутренняя часть, состоящая из гидрофобных окончаний, воду отталкивает,
- в основном молекулы липидов содержат остатки фосфорной кислоты (это фосфолипиды), некоторые связаны с углеводами (гликолипиды) и холестеролом,
- холестерол придает мембране упругость и жесткость,
- благодаря электростатическим свойствам липиды притягивают молекулы белков, которые также входят в структуру цитолеммы.
Именно белковые молекулы (гранулы) заслуживают отдельного внимания ученых. Из-за своего различного положения и ориентации в полужидкой липидной среде они выполняют самые различные и очень важные функции.
Внутри и на поверхности цитолеммы встречаются следующие виды белков:
- Периферические. Эти молекулы расположены на поверхности и в основном выполняют защитную и стабилизирующую функции. Так, они выстраивают ферменты в конвейерные цепи и не позволяют ферментам просто перемещаться вдоль бислоя.
- Погруженные внутрь (полуинтегральные). Основная их функция — ферментативная, также они могут участвовать в транспорте веществ. Изучена и еще одна интересная роль этих белков — как переносчиков. Они легко соединяются с транспортируемыми молекулами и проводят их внутрь клетки.
- Пронизывающие (интегральные). Они располагаются таким образом, что проходят насквозь, через билипидный слой. Если несколько таких белков сливаются, то образуется канал (пора), через которую могут проходить определенные вещества, связываясь с белковыми молекулами.
Таким образом, все элементы мембранного бислоя несут строго ограниченные своей ролью и строением функции. Благодаря такой организации система работает слаженно и точно.
Отмечено, что плазмалеммы даже внутри одной клетки неоднородны. В них различается не только соотношение химических составных (белков, липидов, углеводов), но и вязкость внутреннего содержимого, ферментативная активность, плотность наружного слоя, толщина.
Месторасположение в клетке
Мембранные структуры буквально пронизывают клеточное содержимое. Они ограничивают все органоиды (за редким исключением, например рибосомы), выстилают их изнутри, являются оболочками ядер.
Самая массивная по содержанию плазмалеммы структура — эндоплазматическая сеть (ЭПР). Если сложить все мембраны, ее составляющие, то получится площадь более половины общей — на все клеточное пространство. По морфологии оболочка ЭПР сходна с внешней ядерной. Они составляют с ней единую систему и обеспечивают активный взаимный перенос элементов.
Комплекс Гольджи — еще один органоид, полностью выполненный из мембранных мешочков (цистерн). Также цитолеммы имеют митохондрии и пластиды.
Плазматическая мембрана — это часть плазмалеммы, находящаяся на границе клеточного содержимого. Она ограничивает протопласт от внешней среды, окружает клетку, защищая его от наружного воздействия.
Что такое супердиффузионные мембраны
Диффузионная мембрана – это специальный материал, имеющий двух-, трех- или даже четырехслойную структуру, основу которого составляет нетканый холст. Диффузионные мембраны применяют для защиты утепляющего слоя от проникновения в его толщу испарений. Также, диффузионные мембраны являются превосходной защитой от воды и ветра. При создании крыши, в полном объеме соответствующей всем современным требованиям, каждый застройщик обязательно столкнется с таким понятием, как «кровельный пирог». Для того чтобы крыша выполняла все возложенные на нее функции в течение всего срока эксплуатации, кроме основного кровельного покрытия, необходимо использовать некоторые дополнительные материалы, к числу которых относятся супердиффузионные мембраны. Супердиффузионные мембраны можно использовать при создании кровельного пирога в любой климатической зоне нашей страны. Роль этого дополнительного слоя чрезвычайно важна, так именно его присутствие позволяет снизить силу неблагоприятных воздействий, вызванных экстремальными погодными условиями, а также нивелировать недочеты и ошибки, возникшие в ходе неправильного монтажа кровли.
История исследования клеточной мембраны
Важный вклад в исследование клеточной мембраны был сделан двумя немецкими учеными Гортером и Гренделем в далеком 1925 году. Именно тогда им удалось провести сложный биологический эксперимент над красными кровяными тельцами – эритроцитами, в ходе которых ученые получили так званые «тени», пустые оболочки эритроцитов, которые сложили в одну стопку и измерили площадь поверхности, а также вычислили количество липидов в них. На основании полученного количества липидов ученые пришли к выводу, что их как раз хватаем на двойной слой клеточной мембраны.
В 1935 году еще одна пара исследователей клеточной мембраны, на этот раз американцы Даниэль и Доусон после целой серии долгих экспериментов установили содержание белка в клеточной мембране. Иначе никак нельзя было объяснить, почему мембрана обладает таким высоким показателем поверхностного натяжения. Ученые остроумно представили модель клеточной мембраны в виде сэндвича, в котором роль хлеба играют однородные липидо-белковые слои, а между ними вместо масла – пустота.
В 1950 году с появлением электронного микроскопа теорию Даниэля и Доусона удалось подтвердить уже практическими наблюдениями – на микрофотографиях клеточной мембраны были отчетливо видны слои из липидных и белковых головок и также пустое пространство между ними.
В 1960 году американский биолог Дж. Робертсон разработал теорию о трехслойном строении клеточных мембран, которая долгое время считалась единственной верной, но с дальнейшим развитием науки, стали появляться сомнения в ее непогрешимости. Так, например, с точки зрения термодинамики клеткам было бы сложно и трудозатратно транспортировать необходимые полезные вещества через весь «сэндвич»
И только в 1972 году американские биологи С. Сингер и Г. Николсон смогли объяснить нестыковки теории Робертсона с помощью новой жидкостно-мозаичной модели клеточной мембраны. В частности они установили что клеточная мембрана не однородна по своему составу, более того – ассиметрична и наполнена жидкостью. К тому же клетки пребывают в постоянном движении. А пресловутые белки, которые входят в состав клеточной мембраны имеют разные строения и функции.
Рисунок клеточной мембраны.
Основные функции клеточной мембраны
Одним из основных свойств биологических мембран является избирательная проницаемость (полупроницаемость) — одни вещества проходят через них с трудом, другие легко и даже в сторону большей концентрации Так, для большинства клеток концентрация ионов Na внутри значительно ниже, чем в окружающей среде. Для ионов K характерно обратное соотношение: их концентрация внутри клетки выше, чем снаружи. Поэтому ионы Na всегда стремятся проникнуть в клетку, а ионы K — выйти наружу. Выравниванию концентраций этих ионов препятствует присутствие в мембране особой системы, играющей роль насоса, который откачивает ионы Na из клетки и одновременно накачивает ионы K внутрь.
Стремление ионов Na к перемещению снаружи внутрь используется для транспорта сахаров и аминокислот внутрь клетки. При активном удалении ионов Na из клетки создаются условия для поступления глюкозы и аминокислот внутрь ее.
У многих клеток поглощение веществ происходит также путем фагоцитоза и пиноцитоза. При фагоцитозе гибкая наружная мембрана образует небольшое углубление, куда попадает захватываемая частица. Это углубление увеличивается, и, окруженная участком наружной мембраны, частица погружается в цитоплазму клетки. Явление фагоцитоза свойственно амебам и некоторым другим простейшим, а также лейкоцитам (фагоцитам). Аналогично происходит и поглощение клетками жидкостей, содержащих необходимые клетке вещества. Это явление было названо пиноцитозом.
Наружные мембраны различных клеток существенно отличаются как по химическому составу своих белков и липидов, так и по их относительному содержанию. Именно эти особенности определяют разнообразие в физиологической активности мембран различных клеток и их роль, в жизнедеятельности клеток и тканей.
Для многих типов клеток характерно наличие на их поверхности большого количества выступов, складок, микроворсинок. Они способствуют как значительному увеличению площади поверхности клеток и улучшению обмена веществ, так и более прочным связям отдельных клеток друг с другом.
У растительных клеток снаружи клеточной мембраны имеются толстые, хорошо различимые в оптический микроскоп оболочки, состоящие из клетчатки (целлюлозы). Они создают прочную опору растительным тканям (древесина).
Некоторые клетки животного происхождения тоже имеют ряд внешних структур, находящихся поверх клеточной мембраны и имеющих защитный характер. Примером может быть хитин покровных клеток насекомых.
Функции
В зависимости от расположения и особенностей все мембраны выполняют собственные функции, тем не менее по выполняемой работе они сходны.
Роль плазмалеммы:
- Барьерная. Эта функция является основной и выполняется всеми видами клеточных мембран. Особенно она важна для наружной оболочки: благодаря ей клетка поддерживает форму, гомеостаз, стабильность внутреннего содержимого, целостность.
- Транспортная. Второе важнейшее назначение — активный и пассивный перенос веществ изнутри клетки в наружную среду и обратно. Механизмы этого переноса самые разнообразные, транспорт может происходить как через каналы, образуемые пронизывающими молекулами белков, так и с помощью переносчиков. Также различают пассивное (по градиенту концентрации, например диффузия газов), и активное (против градиента, с затратой выработанной клеткой энергии).
- Рецепторная. Эта роль возложена на пронизывающие белки, которые особым образом связаны с углеводными цепочками (гликополисахаридами). Образовавшиеся таким образом рецепторы, которые по своему строению и являются гликопротеидами, образуют комплекс с гормонами, затем активируются катализаторы, и такая система запускает механизмы поступления или вывода различных веществ.
- Обмен информацией. Способность клетки контактировать оболочками, обмениваясь друг с другом информацией сродни рецепторным реакциям. Благодаря им происходит стимуляция роста или торможения и иные физиологические процессы. Такой контакт может быть механическим (простое или замковое смыкание оболочек) и при помощи специальных образований — синапсов. Передающиеся через синапсы сигналы могут быть как механическими, так и электрическими.
- Энергетическая. Плазмалемма митохондрий и пластид (хлоропластов) отвечает за синтез аденозинтрифосфорной кислоты — аккумулятора клеточной энергии.
Особо следует отметить эндо- и экзоцитоз. Вследствие этих мембранных механизмов в клетку могут поступать не только целые молекулы больших размеров, но и неизмененные, сторонние клетки. Примером эндоцитоза (обволакивания крупных частиц или капель жидкости, втягивание внутрь цитоплазмы и дальнейшая химическая дезактивация) может служить поглощение вредных и чужеродных молекул лейкоцитами.
Экзоцитоз — обратный транспорт. Благодаря ему ненужные, отработанные вещества окружаются плазмалеммами и выносятся наружу через поры.
Такое множество функций и разнообразие реакций, происходящих как внутри, так и снаружи плазмалеммы, возможно за счет их упорядоченного физико-химического строения.
Состав клеточной мембраны: ее строение и уникальность
Самая важная клеточная составляющая мембран – белки. Состав этих белков, а также их расположение и назначение очень разнообразны. Общим является лишь то, что вокруг них всегда располагаются аннулярные липиды – устойчивые и четко структурированные особые жиры. Липиды являются своеобразными «телохранителями» для белков и создают условия и возможности для их работы.
При увеличении клеточной мембраны с помощью микроскопа, можно заметить слой из липидов, по виду напоминающие шарики, среди которых находятся большие, разнообразной формы, белковые клетки. Такие же мембраны находятся и внутри клетки – они делят ее на отсеки, как на комнаты, в которых располагаются органоиды.
В мембране находятся липиды разных классов:
- Фосфолипиды;
- Гликолипиды;
- Холестерол.
Мембрана являет из себя очень важную функциональную составляющую клетки, ее значение сравнимо с любым другим органоидом (ядра, митохондрии и других). А благодаря своему строению она имеет, без преувеличения, уникальные свойства.
Строение
С 1925 года, когда впервые рассмотрели мембрану, гипотеза о ее строении претерпела ряд существенных изменений. С 1972 года общепризнанной считается жидкостно-мозаичная модель плазматической мембраны, которая представлена на схеме:
Рис. 2. Жидкостно-мозаичная модель мембраны
Фосфолипидный биослой устроен таким образом, что гидрофобные остатки жирных кислот обращены внутрь, а гидрофильные головки «смотрят» наружу. Двойной липидный слой – это барьер, благодаря которому содержимое клетки не растекается, и во внутреннее содержимое не попадают токсические вещества.
Рис. 3. Строение клеточной мембраны
В 2-хслойный липидный слой погружены подвижные молекулы белков, которые по выполняемым функциям делятся на 2 большие группы:
- Структурные, которые в прямом смысле поддерживают структуру клетки.
- Динамические, находящиеся на поверхности мембраны. Они участвуют в «барьерных» процессах. Среди динамических различают рецепторные, транспортные и ферментативные белковые глобулы.
Соотношение компонентов в плазматической мембране следующее: белки составляют 65%, на фосфолипиды приходится 25%, холестерол – 13%, липиды другого строения – 4%, углеводы – 3%. Липиды (жиры) отталкивают воду, поэтому ее излишки не попадают в клетку.
Функции
Свойства биологических мембран
1.
Способность к самосборке
после
разрушающих воздействий. Это свойство
определяется физико-химическими
особенностями фосфолипидных молекул,
которые в водном растворе собираются
вместе так, что гидрофильные концы
молекул разворачиваются наружу, а
гидрофобные — внутрь. В уже готовые
фосфолипидные слои могут встраиваться
белки
Способность к самосборке имеет
важное значение на клеточном уровне
2. Полупроницаемость
(избирательность в пропускании ионов
и молекул). Обеспечивает поддержание
постоянства ионного и молекулярного
состава в клетке.
3. Текучесть
мембран.
Мембраны не являются жесткими структурами,
они постоянно флюктуируют за счет
вращательных и колебательных движений
молекул липидов и белков. Это обеспечивает
большую скорость протекания ферментативных
и других химических процессов в мембранах.
4. Фрагменты
мембран не имеют свободных концов,
так как замыкаются в пузырьки.
Липиды клеточных мембран
Клеточная мембрана состоит из белков и липидов, основу которых составляют фосфолипиды. Фосфолипиды занимают значительную часть – 40-90% всех липидов в мембранной оболочке.
Липиды – это амфипатические молекулы, самостоятельно формирующие бислои.
Липиды имеют особенность: растворяются только в растворителях на органической основе и совсем не подвержены растворению в воде. Клеточная мембрана имеет несколько видов липидов: фосфолипиды, холестерол, гликолипиды.
Строение клеточной мембраны до конца не изучено. Происходит постоянное изучение и составление моделей состава мембраны. В одной – мембрана характеризуется как липидный двойной слой. В этом слое углеводородные хвосты липидов за счет гидрофобных взаимодействий удерживаются друг возле друга в вытянутом состоянии во внутренней полости, образуя двойной углеводородный слой. Полярные группы липидов находятся на внешней поверхности бислоя.
Изучение клеточных мембран перспективное направление в науке. Возможно, с полным пониманием механизмов, происходящих внутри клетки, позволит продлить жизнь. Может быть удастся найти ключик к долголетию.
Функции
В зависимости от расположения и особенностей все мембраны выполняют собственные функции, тем не менее по выполняемой работе они сходны.
Роль плазмалеммы:
- Барьерная. Эта функция является основной и выполняется всеми видами клеточных мембран. Особенно она важна для наружной оболочки: благодаря ей клетка поддерживает форму, гомеостаз, стабильность внутреннего содержимого, целостность.
- Транспортная. Второе важнейшее назначение — активный и пассивный перенос веществ изнутри клетки в наружную среду и обратно. Механизмы этого переноса самые разнообразные, транспорт может происходить как через каналы, образуемые пронизывающими молекулами белков, так и с помощью переносчиков. Также различают пассивное (по градиенту концентрации, например диффузия газов), и активное (против градиента, с затратой выработанной клеткой энергии).
- Рецепторная. Эта роль возложена на пронизывающие белки, которые особым образом связаны с углеводными цепочками (гликополисахаридами). Образовавшиеся таким образом рецепторы, которые по своему строению и являются гликопротеидами, образуют комплекс с гормонами, затем активируются катализаторы, и такая система запускает механизмы поступления или вывода различных веществ.
- Обмен информацией. Способность клетки контактировать оболочками, обмениваясь друг с другом информацией сродни рецепторным реакциям. Благодаря им происходит стимуляция роста или торможения и иные физиологические процессы. Такой контакт может быть механическим (простое или замковое смыкание оболочек) и при помощи специальных образований — синапсов. Передающиеся через синапсы сигналы могут быть как механическими, так и электрическими.
- Энергетическая. Плазмалемма митохондрий и пластид (хлоропластов) отвечает за синтез аденозинтрифосфорной кислоты — аккумулятора клеточной энергии.
Особо следует отметить эндо- и экзоцитоз. Вследствие этих мембранных механизмов в клетку могут поступать не только целые молекулы больших размеров, но и неизмененные, сторонние клетки. Примером эндоцитоза (обволакивания крупных частиц или капель жидкости, втягивание внутрь цитоплазмы и дальнейшая химическая дезактивация) может служить поглощение вредных и чужеродных молекул лейкоцитами.
Экзоцитоз — обратный транспорт. Благодаря ему ненужные, отработанные вещества окружаются плазмалеммами и выносятся наружу через поры.
Такое множество функций и разнообразие реакций, происходящих как внутри, так и снаружи плазмалеммы, возможно за счет их упорядоченного физико-химического строения.
Значение и выводы
Строение наружной клеточной мембраны оказывает влияние на весь организм. Она играет важную роль в защите целостности, позволяя проникновение только выбранных веществ. Это также хорошая база для крепления цитоскелета и клеточной стенки, что помогает в сохранении формы клетки. Липиды составляют около 50% массы мембраны большинства клеток, хотя этот показатель варьируется в зависимости от типа мембраны. Строение наружной клеточной мембраны млекопитающих являются более сложным, там содержатся четыре основных фосфолипида. Важным свойством липидных би-слоев является то, что они ведут себя как двумерные жидкости, в которой отдельные молекулы могут свободно вращаться и перемещаться в боковых направлениях
Такая текучесть — это важное свойство мембран, которое определяется в зависимости от температуры и липидного состава. Благодаря углеводородной кольцевой структуре холестерин играет определенную роль в определении текучести мембран. биологических мембран для малых молекул позволяет клетке контролировать и поддерживать ее внутреннюю структуру
биологических мембран для малых молекул позволяет клетке контролировать и поддерживать ее внутреннюю структуру.
Рассматривая строение клетки (клеточная мембрана, ядро и так далее), можно сделать вывод о том, что организм — это саморегулирующая система, которая без посторонней помощи не сможет себе навредить и всегда будет искать пути для восстановления, защиты и правильного функционирования каждой клеточки.
Клеточная мембрана – это структура, покрывающая клетку снаружи. Её так же называют цитолемма или плазмолемма.
Данное образование построено из билипидного слоя (бислоя) со встроенными в него белками. Углеводы, входящие в состав плазмолеммы, находятся в связанном состоянии.
Распределение основных компонентов плазмолеммы выглядит следующим образом: более половины химического состава приходится на белки, четверть занимают фосфолипиды, десятую часть – холестерол.