Из чего состоит днк

Хромосомы и гены

Внутри ядра нити ДНК плотно упакованы с образованием хромосом. Во время деления клетки хромосомы видны. Каждая хромосома имеет точку сужения, называемую центромерой, из которой формируются два основания. Короткое основание хромосомы обозначено «p arm». Длинное основание хромосомы обозначается «q arm».

Каждая пара хромосом по-разному определяется расположением центромеры и размерами оснований p и q. Люди обычно имеют 23 пары хромосом, что в общей сложности составляет 46. Двадцать две из этих пар, называемые аутосомами, выглядят одинаково как у мужчин, так и у женщин.

23-я пара называется половой хромосомой и отличается у мужчин и женщин. У женщин есть две копии Х-хромосомы или ХХ, а у мужчин — одна Х и одна Y-хромосома.

Гены — это наследственный материал, который лежит в клеточном ядре. Гены, которые состоят из ДНК, действуют как инструмент для создания молекул, называемых белками.

Проект «Геном человека» подсчитал, что у людей от 20 000 до 25 000 генов. У каждого человека есть две копии каждого гена, по одной унаследованной от каждого родителя. Они в основном одинаковы у всех людей, но небольшое количество генов (менее 1 процента от общего числа) немного отличается у людей, что составляет основу тестов на отцовство и анализа ДНК.

В отличие от ферментов, кислота не действует непосредственно на другие молекулы; скорее, различные ферменты воздействуют на ДНК и копируют её информацию либо в большее количество дезоксирибонуклеиновой кислоты в процессе репликации, либо транскрибируют её в белок. Другие белки, такие как гистоны, участвуют в упаковке ДНК или восстановлении ее повреждений, которое вызывает мутации.

Днк человека расшифровка. Расшифрована древнейшая днк человека.

Исследователи смогли расшифровать древнейшую днк человека: источником материала стали окаменелости, чей возраст равен 300-400 тыс. Лет. Об открытии стало известно от немецких ученых.

Окаменелости были найдены на территории известного могильника расщелина костей (Испания. Первоначально кости классифицировали как принадлежащие гейдельбергскому человеку, который, в свою очередь, считается предком неандертальца. Вместе с тем другие исследователи указывали на родство с денисовским и современным человеком. Специалисты предприняли попытку секвенировать ядерную днк: в качестве источника материала выступили зуб и одна из костей ноги. Полностью секвенировать геномы не получилось, но была получена информация про один — два миллиона пар.

Затем исследователи попытались вычленить маркеры неандертальца, денисовского и современного человека. Оказалось, что останки содержали значительно больше неандертальских аллелей, а вот различия с денисовским человеком и Homo Sapiens оказались весьма существенны. Это говорит о том, что предки неандертальцев были отделены от предков других представителей рода Homo намного раньше, чем считалось.

Результаты подтверждают, что и предки человека разумного также очень давно выделились в отдельную группу. Разница с первоначальной версией 100-400 тыс составляет. Лет. Все это может привести к пересмотру взглядов относительно эволюции Homo Sapiens.

Ранее, мы напомним, другие исследователи нашли скелеты, принадлежащие неизвестным до этого науке человекообразным существам. Их назвали важным звеном между относительно примитивными гоминидами и более развитыми представителями рода Homo.

«Генотек»

От 20 тысяч рублей

Компания выпускников МГУ «Генотек» предлагает либо полную расшифровку генома за 375 тысяч рублей, либо отдельных участков — в зависимости от цели исследования. Например, есть пакет «Генетика красоты» за 24 495 рублей. Клиенту обещают рассказать всё о факторах, влияющих на его внешность, о том, как поддерживать молодость и красоту стоит именно ему. Другой пакет — «Профориентация» — это сочетание психологического теста и анализа ДНК, оно должно выявить, какие сферы деятельности больше всего подходят человеку. Услуга стоит от 30 тысяч рублей. О расовом составе крови и происхождении в «Генотеке» можно узнать за 20 тысяч рублей.

«Генотек» был создан в 2011 году, сейчас это одна из самых известных российских команд на рынке. Интерес к себе они поддерживают во многом благодаря пиару. Например, в рекламных целях делали расшифровку шпионке Анне Чапман и инвестору Александру Галицкому.

500 тысяч долларов, которые компания получила от фонда Rustars Ventures и бизнес-ангелов, давно окупились. По данным газеты «Ведомости», оборот компании в прошлом году составил около одного миллиона долларов.

Функции РНК

Функции РНК: реализует наследственную информацию, принимает участие в синтезе белков.

Информационная (матричная) РНК (иРНК) представляет собой копию участка ДНК, то есть одного или нескольких генов. Она переносит генетическую информацию к месту синтеза полипептидной цепи и принимает в нем непосредственное участие. Соответственно длине участка ДНК, которое и РНК копирует, она состоит из 300-30 000 нуклеотидов. Часть и РНК в клетке составляет около 5 % общего количества. Молекулы и РНК относительно нестабильные – быстро распадаются на нуклеотиды. Срок их жизни составляет в клетках эукариот до нескольких часов, у микроорганизмов – несколько минут.

Подобно молекуле ДНК, и РНК имеет вторичную и третичную структуры, которые формируются с помощью водородных связей, гидрофобных, электростатических взаимодействий и т. п.

Рибосомная РНК составляет 60 % массы рибосом, около 85 % общего количества РНК клетки. Включает 3000-5000 нуклеотидов. Она не принимает участия в передаче наследственной информации. Входит в состав рибосомы и взаимодействует с ее белками, которых у эукариот около 100. У эукариот есть четыре типа рибосомной РНК, у прокариот — три. Выполняет структурную функцию: обеспечивает определенное пространственное расположение иРНК и тРНК на рибосоме.

Транспортная (тРНК) — переносит аминокислоты к месту синтеза белка. По принципу комплементарности узнает участок иРНК, отвечающий аминокислоте, которая транспортируется. К месту синтеза белка каждая аминокислота транспортируется своей тРНК. тРНК транспортируются элементами цитоскелета клетки.

Имеет форму трехлистника (листка клевера) — постоянную вторичную структуру, которая обеспечивается водородными связями. На верхушке тРНК расположен триплет нуклеотидов, соответствующий кодону иРНК и называющийся антикодоном. Возле основания есть участок, к которому благодаря ковалентной связи молекула аминокислоты прикрепляется. Содержит тРНК 70-90 нуклеотидов. Составляет до 10 % общего количества РНК. Известно около 60 видов тРНК.

тРНК может иметь довольно компактную L-подобной неправильной формы третичную структуру.

Как проводится анализ ДНК на отцовство?

Стандартный материал для проведения данного анализа – это буккальный эпителий, то есть эпителий, который находится в ротовой полости человека. Хотя для проведения ДНК анализа пригоден практически любой биологический материал, содержащий в себе клетки человеческого организма. Буккальный мазок является самым быстрым, безболезненным и доступным для правильного самостоятельного забора способом получения ДНК материала.

Дезоксирибонуклеиновая кислота или ДНК – генетический материал, содержащийся в клетках нашего тела и состоящий наполовину из ДНК матери и на вторую половину — из ДНК отца. ДНК тест представляет собой глубокий анализ генетических данных матери, ребенка и предполагаемого отца.

ДНК тест на отцовство проводится путем анализа ПРЦ (полимеразной цепной реакции). Последний основан на принципах молекулярной биологии, выполняется с применением особых ферментов, многократно увеличивающих фрагменты ДНК (локусы), позволяя тем самым проводить точную сверку биологических материалов.

Точность такого анализа максимально высокая, именно потому, на данный момент это основной метод установления биологического отцовства. Качественно проведенный ПРЦ анализ не допускает двусмысленного трактования. При его использовании анализы проведенные в двух различных лабораториях в различное время обязательно совпадут!

Что может повлиять на результат ДНК анализа на отцовство?

Близкое родство предполагаемых отцов – такая ситуация достаточно распространена, если о близком родстве известно, об этом обязательно нужно сообщать лаборатории и лучше проводить анализ с участием всех предполагаемых отцов. Если анализ с участием второго предполагаемого отца невозможен, то проводится расширенный анализ, до 33 локусов, в котором рассчитывается вероятность отцовства второго отца-родственника, без необходимости его участия.

Повреждение/загрязнение ДНК образца – в каких случаях это может произойти. Забор буккального мазка необходимо проводить обязательно при чистой ротовой полости, за час до забора исключается употребление пищи и каких либо напитков, кроме чистой воды. Мелкие загрязнения в виде частичек бытовой или бумажной пыли игнорируются лабораторией при проведении ДНК анализа и никак не влияют на результат. Однако, если образец будет поврежден плесенью от хранения во влажном виде в полиэтилене, или смешан с образцом другого человека, то лаборатория просто не сможет выделить ДНК из предоставленного материала и запросит пересдачу, то есть, сроки получения результата анализа ДНК на отцовство будут перенесены с учетом нового времени сдачи образцов.

Переливание крови и пересадка костного мозга также не влияют на точность ДНК анализа, так как ДНК человека не может кардинально измениться в течении жизни. Однако, данные ситуации имеют некоторые ограничения. После проведения подобных процедур некоторое время человек может иметь смешанную ДНК и для того, чтобы не запрашивать пересдачи, лаборатория просит проводить ДНК анализы на отцовство по прошествии 3-х месяцев.

Синтез ДНК. Репликация

Уникальным свойством ДНК является ее способность удваиваться (реплицироваться). В природе репликация ДНК происходит следующим образом: с помощью специальных ферментов (гираз), которые служат катализатором (веществами, ускоряющими реакцию), в клетке происходит расплетение спирали в том ее участке, где должна происходить репликация (удвоение ДНК). Далее водородные связи, которые связывают нити, разрываются и нити расходятся.

В построении новой цепи активным «строителем» выступает специальный фермент — ДНК-полимераза. Для удвоения ДНК необходим также стратовый блок или «фундамент», в качестве которого выступает небольшой двухцепочечный фрагмент ДНК. Этот стартовый блок, а точнее — комплементарный участок цепи родительской ДНК — взаимодействует с праймером — одноцепочечным фрагментом из 20—30 нуклеотидов. Происходит репликация или клонирование ДНК одновременно на обеих нитях. Из одной молекулы ДНК образуются две молекулы ДНК, в которых одна нить от материнской молекулы ДНК, а вторая, дочерняя, вновь синтезированная.

Таким образом, процесс репликации ДНК (удваивания) включает в себя три основных этапа:

  • Расплетение спирали ДНК и расхождение нитей
  • Присоединение праймеров
  • Образование новой цепи ДНК дочерней нити

В основе анализа методом ПЦР лежит принцип репликации ДНК — синтеза ДНК, который современным ученым удалось воссоздать искусственно: в лаборатории врачи вызывают удвоение ДНК, но только не всей цепи ДНК, а ее небольшого фрагмента.

Функции и состав

Молекула ДНК представляет собой полимер, который состоит из нескольких тысяч пар нуклеотидных мономеров. Объединение нескольких нуклеотидов вместе приводит к образованию полинуклеотидной цепи. Мономерными единицами кислоты являются нуклеотиды, а полимер известен как «полинуклеотид». Каждый нуклеотид состоит из 5-углеродного сахара (дезоксирибоза), азотсодержащего основания, присоединённого к сахару, и фосфатной группы.

Нуклеотиды также известны как азотистые основания ДНК. Азотистые основания бывают двух типов, а именно: пиримидины и пурины.

Пиримидины — это структуры с одним кольцом, Бывают нескольких типов, а именно цитозин и тимин. Они занимают меньше места в структуре кислоты. Пиримидин связан с дезоксирибозным сахаром в положении 3.

Пурины представляют собой соединения с двойным кольцом. Бывают двух типов, а именно аденин и гуанин. Занимают больше места в структуре кислоты. Дезоксирибозный сахар связан в положении 9 пурина.

Таким образом, в ДНК существует четыре различных типа азотистых оснований, а именно: аденин (A), гуанин (G), цитозин и тимин (T). В РНК тимин пиримидинового основания заменяется урацилом.

Пуриновые и пиримидиновые основания всегда сопряжены определённым образом. Аденин всегда будет сочетаться с тимином, а гуанин с цитозином. Аденин и тимин соединены двойными водородными связями, а гуанин и цитозин — тройными водородными связями. Однако эти связи являются слабыми, что помогает в разделении цепей во время репликации.

Дезоксирибоза сахара — пентозный сахар с пятью атомами углерода. Четыре атома углерода находятся внутри кольца, а пятый — с группой CH2. У последнего есть три группы ОН в 1, 3 и 5 углеродных положениях. Атомы водорода связаны с атомами углерода от одного до четырёх. В РНК сахарная рибоза похожа на дезоксирибозу за исключением того, что она имеет группу ОН на атоме углерода 2 вместо группы Н.

Молекула фосфата расположена альтернативно молекуле дезоксирибозы. Таким образом, с обеих сторон фосфата находится дезоксирибоза. Фосфат соединён с атомом углерода 3 дезоксирибозы с одной стороны и с атомом углерода 5 дезоксирибозы с другой стороны.

Нуклеозиды отличаются от нуклеотидов тем, что в них отсутствуют фосфатные группы. Четырьмя различными нуклеозидами ДНК являются дезоксиаденозин (дА), дезоксигуанозин (дГ), дезоксицитозин (дК) и дезокситимидин (дТ).

Есть ли практическое применение информации из ДНК?

Конечно есть! Полиция, например, в наши дни часто использует анализ ДНК для раскрытия давно забытых преступлений. Специалисты по генеалогии используют эту молекулу для составления и подтверждения генеалогического древа, которое может иметь возраст в несколько веков. Историки часто используют ДНК для идентификации останков погибших солдат. Врачи тоже часто используют новые лекарства и методы лечения. В том числе для борьбы с раком и коронавирусом. Они разрабатываются в процессе молекулярно-генетических манипуляций. А специалисты по фертильности помогают бесплодным парам заводить биологически родных детей.

Понимание природы ДНК и того, как она функционирует, не только ведет к разработке новых технологий. Одновременно оно усиливает наше восхищение этой удивительной молекулой жизни…

Индекс отцовства

Параметр «Индекс отцовства» (в таблице – PI) отображает генетические шансы подтверждения биологического отцовства. Рассчитывается индекс отцовства отдельно для каждого тестируемого локуса и определяется как вероятность того, что ребенком унаследована обязательная аллель предполагаемого отца, а не случайного не тестируемого мужчины.

Комбинированный индекс отцовства – CPI вычисляется путем умножения индивидуальных PI. К примеру, CPI = 100 000, это значит, что вероятность того, что тестируемый мужчина является биологическим отцом, тестируемого ребенка в 100 000 раз выше, чем вероятность на отцовство другого случайного мужчины.

PI в локусах, не имеющих совпадения, равен нулю! Если несовпадение присутствует в 3-х и более локусах, то CPI также равен нулю! Иногда в результате теста может присутствовать несовпадение в 1 или 2 локусах, причиной этому могут быть мутации, близкая родственная связь биологического отца и предполагаемого тестироемого отца (брат, отец и сын). В таком случае, проводится расширенный ДНК анализ с дополнительными расчетами и рекомендацией к участию всех возможных биологических отцов.

ДНК

Код днк человека расшифровка. Расшифрован скрытый код в ДНК человека

Британские и канадские ученые составили словарь «тайнописи», скрытой в коде ДНК. Она позволяет с помощью одного и того же гена получать «инструкции» для синтеза в клетках разных белков, пишет журнал Nature.

Как отмечается в работе, у сложных организмов последовательности элементов ДНК-нуклеотидов, содержащие информацию для синтеза тех или иных белков, чередуются с «пустыми» участками.

В процессе синтеза белка пустые участки исчезают, а содержащие информацию «склеиваются». Однако, по мнению биологов, это удаление и склейка могут происходить разными способами. Поэтому разным получается и сам результат синтеза – белок, передает РИА «Новости» .

Процесс, известный как альтернативный сплайсинг, дает различным клеткам возможность по-разному «прочитать» один и тот же ген. Это позволяет существенно увеличить информационную емкость генома.

Исследование механизма сплайсинга, а также прогнозирование его результатов в разных тканях организма оказалось достаточно трудной задачей. Работа под руководством профессоров Брендана Фрея и Бенджамина Бленкоу из университета Торонто, по словам его авторов, представляет собой описание «кода сплайсинга». Оно является «словарем» комбинаций из сотен характеристик РНК и результатов сплайсинга для большого количества эксонов.

ДНК человека имеет второй, секретный генетический код, уверены ученые-генетики из США. По мнению генетиков, кроме ДНК в организме человека есть «секретный» код, регулирующий активность тех или иных генов.

Возможные нарушения в работе секретного кода могут быть связаны с различными заболеваниями, возникающими у человека.Ранее бытовало мнение, что генетический код необходим для правильного синтеза белков, теперь американские генетики доказывают, что есть и второе, секретное назначение кода ДНК.

Американцы провели исследование на данную тему в рамках проекта ENCODE – «Энциклопедии элементов ДНК», в работе приняли участие 81 доброволец.

«Атлас»

14 900 рублей

Компания «Атлас» работает в двух направлениях. Первое — это развитие медицинской клиники в Москве, второе — это сервис по расшифровке ДНК. Генетический тест стоит 14 900 рублей. Он включает в себя показатели здоровья (от риска заболеваний до реакции на лекарства), показатели спорта и питания (от оптимальной диеты до оптимального вида спорта), а также информацию о личностных качествах и происхождении. Помимо теста в стоимость услуги входит онлайн-консультация врача-генетика. По результатам пользователь получит рекомендации по всем пунктам с пояснениями.

Как уверяют в самой компании, предложение «Атласа» сейчас самое оптимальное в России по количеству анализируемых показателей и по стоимости. При этом у «Атласа» существенный стартовый капитал, только на разработку внутренней системы хранения и обработки ДНК-информации было потрачено 10 миллионов рублей.

Продажи генетического теста начались в середине сентября.

Структура ДНК

Первичная структура ДНК — это линейная последовательность нуклеотидов ДНК в цепи. Последовательность нуклеотидов в цепи ДНК записывают в виде буквенной формулы ДНК: например — AGTCATGCCAG, запись ведется с 5’- на 3’-конец цепи ДНК.

Вторичная структура ДНК образуется за счет взаимодействий нуклеотидов (в большей степени азотистых оснований) между собой, водородных связей. Классический пример вторичной структуры ДНК — двойная спираль ДНК. Двойная спираль ДНК — самая распространенная в природе форма ДНК, состоящая из двух полинуклеотидных цепей ДНК. Построение каждой новой цепи ДНК осуществляется по принципу комплементарности, т. е. каждому азотистому основанию одной цепи ДНК соответствует строго определенное основание другой цепи: в комплемнтарной паре напротив A стоит T, а напротив G располагается C и т.д.

Итак, как это работает?

Лучшая метафора, иллюстрирующая функцию хранения информации в ДНК, — это энциклопедия рецептов.

Многие люди бережно хранят свои семейные книги рецептов, доставшиеся им от предков. Эти рецепты иногда дополняются или корректируются. А затем передаются детям. Так происходит из поколения в поколение. Этот процесс сохраняет, хотя и с небольшими изменениями, важнейшие семейные кулинарные традиции.

В принципе, полный набор генетической информации в организме, или геном, ничем не отличается от сборника семейных рецептов. Геном использует ДНК вместо бумаги, чтобы передать по наследству драгоценную интеллектуальную собственность семьи. Наш геном очень похож в этом смысле на многотомную семейную энциклопедию. Ген предоставляет клетке инструкции и информацию, приказывая ей производить определенные белки в определенных тканях, в определенное время и при определенных условиях.

А теперь представьте свою семейную коллекцию кулинарных книг, состоящую из 23 томов. В которых, в общей сложности, содержится около 20 000 рецептов. Это приблизительное количество генов в геноме человека. Мы храним большую часть нашей ДНК в 23 парах хромосом. В общей сложности их 46 в каждой клетке. И каждая хромосома состоит из длинной цепочки ДНК, в которой закодирована генетическая информация.

Что делает эта молекула?

Все бактерии, растения и животные, включая человека, используют эту удивительную молекулу в качестве хранилища своей наследственной информации. То есть, проще говоря, как рецепт передачи каждой генетической особенности. От цвета глаз до группы крови. И этот рецепт храниться в каждой клетке организма. Эти сегменты ДНК, несущие генетическую информацию, называются генами. По сути, ДНК человека отличается от ДНК томата только последовательностью расположения пар оснований A, T, C и G.

Именно эта молекула хранит инструкции по производству, скажем, инсулина в клетках поджелудочной железы человека. Или фотосинтетических ферментов в растениях. Однако в ДНК растений отсутствуют инструкции по последовательностям оснований для производства инсулина. А в ДНК человека отсутствуют инструкции для производства фотосинтетических ферментов.

Разница между клеткой печени и клеткой кожи заключается в том, что хотя обе они активируют («экспрессируют») гены, необходимые для осуществления основных жизненных процессов, клетка печени экспрессирует гены только белков печени. Остальные гены остаются на месте. Но не экспрессируются. Точно так же клетки кожи экспрессируют гены, уникальные для белков кожи. Однако гены печени (и другие) при этом заглушаются.

Состав ДНК

Без знания, из чего состоит ДНК, не было бы ни одного достижения медицины. Каждый нуклеотид – это три части: остаток сахара пентозы, азотистое основание, остаток фосфорной кислоты. Исходя из особенностей соединения, кислоты могут называться дезоксирибонуклеиновой или рибонуклеиновой. В состав ДНК входит огромное число мононуклеотидов из двух оснований: цитозин и тимин. Кроме этого, она содержит производные пиримидинов, аденин и гуанин.

Есть в биологии определение DNA – мусорная ДНК. Функции ее еще неизвестны. Альтернативная версия названия – «некодирующая», что не верно, т.к. она содержит кодирующие белки, транспозоны, но их назначение тоже тайна. Одна из рабочих гипотез говорит о том, что некоторое количество этой макромолекулы способствует структурной стабилизации генома в отношении мутаций.

Роль в клетке

Основная роль ДНК в клетках – передача наследственных генов и выживание будущего поколения. От нее зависят не только внешние данные будущей особи, но и ее характер и здоровье. Дезоксирибонуклеиновая кислота находится в суперскрученном состоянии, но для качественного процесса жизнедеятельности она должна быть раскрученной. С этим ей помогают ферменты — топоизомеразы и хеликазы.

Топоизомеразы относятся к нуклеазам, они способны изменять степень скрученности. Еще одна их функция – участие в транскрипции и репликации (делении клеток). Хеликазы разрывают водородные связи между основаниями. Существуют ферменты лигазы, которые нарушенные связи «сшивают», и полимеразы, которые участвуют в синтезе новых цепей полинуклеотидов.

Нуклеиновые кислоты – полимерные молекулы

Нуклеиновые кислоты — самые крупные нерегулярные полимерные органические молекулы, носящие название полинуклеотидов. Обычно ДНК намного крупнее РНК. Их мономерами являются нуклеотиды (нуклеозиды, дезоксинуклеозиды и др.). Каждый из них состоит из трёх компонентов:

  • пентозы, или пятиуглеродного сахара (рибоза в РНК и дезоксирибоза в ДНК);
  • фосфатной группы – остатка фосфорной кислоты (—PO 4 -);
  • азотистого основания.

Строение нуклеотида

Азотистые основания — это ароматические гетероциклические соединения, производные пиримидина или пурина. Нуклеотиды имеют пять основных типов азотистых оснований. Двухкольцевые пуриновые: аденин (Аde) и гуанин (Gua). Каждое из них содержится как в ДНК, так и в РНК. Остальные три основания представляют собой однокольцовые молекулы, производные пиримидина: цитозин (Cyt — есть как в ДНК, так и в РНК), тимин (Thy — только в ДНК), урацил (Ura — только в РНК).

Аденин и рибоза образуют нуклеозид аденозин (A), производные других азотистых оснований носят названия: гуанозин (G, Г), уридин (U, У), тимидин (Т), цитидин (C, Ц). При соединении азотистых оснований с дезоксирибозой образуются дезоксинуклеозиды. Все нуклеозидфосфаты объединяют под общим названием — нуклеотиды.

Строение пурина и пуриновых азотистых основанийСтроение пиримидина и пиримидиновых азотистых оснований

Нуклеиновые кислоты образуются путём реакции обезвоживания (конденсации, или дегидрации) между фосфатной группой одного нуклеотида и гидроксильной группой пентозы другого нуклеотида. Так получается фосфодиэфирная связь, объединяющая два углевода через фосфат.

В молекуле нуклеотида азотистое основание присоединено к первому атому углерода пентозы, а остаток фосфорной кислоты — к пятому. Получающаяся полинуклеотидная цепь полярна, она имеет два конца:

  • 5′ (пять-штрих положение) — углеродный атом в пятичленном моносахариде — рибозе или дезоксирибозе;
  • 3´ (три-штрих положение) — гидроксильная группа, взятая от углевода (ОН).

Эти концы в двойной спирали ДНК соединяются через фосфатную группу по типу голова-хвост (3′ к 5′) по принципу комплементарности, азотистыми основаниями внутрь спирали. Такая ориентация цепей называется антипараллельной.

Деление нуклеиновой кислоты

ДНК может копировать себя. Обе нити кислоты открываются и делают копию каждой. Таким образом, каждая новая ДНК имеет одну копию старой, из которой, в свою очередь, сделана копия. Митохондрии содержат небольшое количество ДНК. Этот генетический материал известен как митохондриальная ДНК или мтДНК.

Каждая клетка содержит от сотен до тысяч митохондрий, которые лежат в цитоплазме. Митохондриальная кислота содержит 37 генов, которые помогают ей нормально функционировать. Тринадцать из этих генов предоставляют инструменты для создания ферментов, участвующих в производстве энергии путём окислительного фосфорилирования. Остальные гены помогают в создании молекул, называемых трансферными РНК (тРНК) и рибосомными РНК (рРНК), которые помогают в синтезе белка.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector